Improvement and generalization of some Jensen-Mercer-type inequalities
نویسندگان
چکیده
منابع مشابه
On Generalization of Cebysev Type Inequalities
In this paper, we establish new Cebysev type integral inequalities involving functions whose derivatives belong to L_{p} spaces via certain integral identities.
متن کاملInequalities of Jensen-pečarić-svrtan-fan Type
By using the theory of majorization, the following inequalities of Jensen-PečarićSvrtan-Fan type are established: Let I be an interval, f : I → R and t ∈ I, x, a, b ∈ I. If a1 ≤ · · · ≤ an ≤ bn ≤ · · · ≤ b1, a1 +b1 ≤ · · · ≤ an +bn; f(t) > 0, f ′(t) > 0, f ′′(t) > 0, f ′′′(t) < 0 for any t ∈ I, then f(A(a)) f(A(b)) = fn,n(a) fn,n(b) ≤ · · · ≤ fk+1,n(a) fk+1,n(b) ≤ fk,n(a) fk,n(b) ≤ · · · ≤ f1,n...
متن کاملBounds for the Normalized Jensen – Mercer Functional
We introduce the normalized Jensen-Mercer functional Mn( f ,x, p) = f (a)+ f (b)− n ∑ i=1 pi f (xi)− f ( a+b− n ∑ i=1 pixi ) and establish the inequalities of type MMn( f ,x,q) Mn( f ,x, p) mMn( f ,x,q) , where f is a convex function, x = (x1, . . . ,xn) and m and M are real numbers satisfying certain conditions. We prove them for the case when p and q are nonnegative n -tuples and when p and q...
متن کاملSome compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کاملSome extended Simpson-type inequalities and applications
In this paper, we shall establish some extended Simpson-type inequalities for differentiable convex functions and differentiable concave functions which are connected with Hermite-Hadamard inequality. Some error estimates for the midpoint, trapezoidal and Simpson formula are also given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Inequalities
سال: 2020
ISSN: 1846-579X
DOI: 10.7153/jmi-2020-14-24